第二章 时间的形态(3)

上一章 · 章节列表 · 下一章

像单摆一样从一个值向另一个值来回摆动。

根据量子理论,一个单摆的基态或者最低能量的态不是只停留在最低能量的点上,而直接向下指。如果那样就具有确定的位置和确定的速度,即零速度。就违背了不确定性原理,这个原理禁止同时精确地测量位置和速度。位置的不确定性乘上动量的不确定性必须大于被称为普朗克常数的一定量。普朗克常数因为经常使用显得太长,所以用一个符号来表示:h。

这样一个单摆的基态,或最低能量的态,正如人们预料的,不具有零能量。相反的,甚至在一个单摆后者任何振动系统的基态之中,必须有一定的称为零点起伏的最小量。这意味着单摆不必须垂直下指,它还有在和垂直成小角度处被发现的概率。类似的,甚至在真空或者最低能的态,在麦克斯韦场中的波长也不严格为零,而具有很小的量。单摆或者波的频率越高,则基态的能量越高。

人们计算了麦克斯韦场和电子场的基态起伏,发现这种起伏使电子的表现质量和电荷都变成无穷大,这根本不是我们所观测到的。然而,在40年代物理学家查里德?费因曼,朱里安?施温格和超永振一郎发展了一种协调的方法,除去或者减掉这些无穷大,而且只要处理质量和电荷的有限的观测值。尽管如此,基态起伏仍然产生微小效应,这种效应可以被提出的理论中的杨-米尔斯理论是麦克斯韦理论的一种推广,它描述另外两种成为弱核力和强核力的相互作用。然而,在量子引力论中基态起伏具有严重的多的效应。这里重复一下,每一波长各种基态能量。由于麦克斯韦场具有任意短的波长,所以在时空的任一区域中都具有无限数目的不同波长,并且此具有无限量的基态能。因为能量密度和物质一样是引力之源,这种无限大的能量密度表明,宇宙中存在足够的引力吸引,使时空卷曲成单独的一点,显然这并未发生。

人们也许会说基态起伏没有引力效应,以冀解决似乎在观测和理论之间的冲突,但是这也不可以。人们可以对利用卡米西尔效应是把符合在平板间的波长的数目相对于外面的数目稍微减少一些。这就意味着,在平板之间的基态起伏的能量密度虽然仍为无限大,却比外界的能量密度少了有限量。这种能量密度差产生了将平板拉到一起的力量,这种力已被实验观测到。在广义相对论中,力正和物质一样是引力的源。这样,如果无视这种能量差的引力效应则是不协调的。

解决这个问题的另一种可能的方法,是假定存在诸如爱因斯坦为了得到宇宙的静态模型的宇宙常数。如果该常数具有无限大负值,它就可能精确地对消自由空间中的基态能量的无限正值。但是这个宇宙常数似乎非常特别,并且必须被无限准确地调准。

20世纪70年代人们非常幸运地发现了一种崭新的对称。这种对称机制将从基态起伏引起的无穷大对消了。超对称是我们现代数学模型的一个特征,它可以不同的方式来描述。一种方式是讲,时空除了我们所体验到的维以外还有额外维。这些维被成为格拉斯曼维,因为它们是用所谓的格拉斯曼变量的数而不用通常的实数来度量。通常的数是可以变换的,也就是说你进行乘法时乘数的顺序无关紧要:6乘以4和4乘以6相等。但是格拉斯曼变量是反交换的,x乘以y和-y乘以x相等。

超对称首先用于无论通常数的维还是格拉斯曼维都是平坦而不是弯曲的时空中去消除物质场和杨-米尔斯场的无穷大。但是把它推广到通常数和格拉斯曼维的弯曲的情形是很自然的事。这就导致一些所谓超引力的理论,它们分别具有不同数目的超对称。超对称一个推论是每一中场或粒子应有一个其自旋比它大或小半个的超伴侣。我在底层的生活

玻色子,也就是其自悬数为整数的场的基态能量只正的。另一方面,费米子,也就是其自旋为半整数的场的基态能量非负值。因为存在相等数目的玻色子和费米子,超引力理论中的最大的无穷大就被抵消了。

或许还遗留下更小的但是仍然无限的量的可能性。无人有足够的耐心,去计算这些理论究竟是否全有限。人们认为这要一名能干的学生花200年才能完成,而且你何以得知他是否在第二也就犯错误了?直到1985年大多数人仍然相信,最超前对称的超引力理论可避免无穷大。

然后时尚突然改变。人们宣称没有理由期望超引力理论可以避免无穷大,而这意味着它们作为理论而言具有的把引力和量子理论合并的方法。它们只有长度。在弦理论中是同名物,是一维的延展的物体。它们只有长度。在弦理论中弦在时空背景中运动。弦上的涟漪被解释为粒子。

如果弦除了他们通常数的维外,还有格拉斯曼维,涟漪就对应于玻色子和费米子。在这种情形下,正的和负的基态能就会准确对消到甚至连更小种类的无穷大都不存在。人们宣布超弦是TOE,也就是万物的理论。

未来的科学史家将会发现,去描绘理论物理学家中的思潮的起伏是很有趣的事。在好些年里,弦理论甚至高无上,而超引力只能作为在低能下有效的近似理论而受到

上一章 · 章节列表 · 下一章